Substrate Resistance Modeling by Combination of BEM and FEM Methodologies

نویسندگان

  • E. Schrik
  • N. P. van der Meijs
چکیده

In present-day IC’s, substrate noise can have a significant impact on performance. Thus, modeling the noise-propagation characteristics of the substrate is becoming ever more important. Two ways of obtaining such a model are the Finite Element Method (FEM) and the Boundary Element Method (BEM). The FEM makes a full 3D discretization of the entire substrate and is very accurate and flexible, but, in general, it is also slow. The BEM only discretizes contact areas on the substrate-boundary, and is usually faster, but less flexible, because it assumes the substrate to consist of uniform layers. Sometimes, layout-dependent doping patterns near the top of the substrate may also play a significant role in noise-propagation. The FEM would easily be able to model such patterns, but it can often be too slow. The BEM, on the other hand, might not always be accurate enough. This paper describes a combination between BEM and FEM, which results in a method that is faster than FEM but more accurate than BEM. Through a number of experiments, the method is validated and successfully verified against 2 commercially available tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined BEM/FEM vs. 3DFEM Substrate Resistance Modeling

In the context of substrate resistance modeling a combined BEM/FEM method is compared to a 3DFEM method. The combined BEM/FEM method is applicable in substrate modeling problems which involve layout-dependent doping patterns for which a standalone BEM would not be accurate enough and for which a standalone FEM would be too slow. The method captures local couplings within the doping pattern with...

متن کامل

Stiffeners Mechanical Effect Analysis by Numerical Coupling

Given any structure, we seek to find the solution of mechanical problem as precisely and efficiently as possible. Within this condition, the BEM is robust and promising development, standing out in the analysis of cases with occurrence of large stress gradients, as in problems of fracture mechanics. Moreover, in BEM the modeling of infinite means is performed naturally, without the use of appro...

متن کامل

Evaluation and Comparison of FEM and BEM for Extraction of Homogeneous Substrates

SUMMARY In the design and fabrication of micro-electronic circuits, it is necessary to simulate and predict many kinds of effects, such as substrate crosstalk, interconnect delays and others. In order to simulate and predict properly these effects, accurate and efficient substrate modeling methods are required. Substrate resistance extraction involves finding a resistance network between ports ...

متن کامل

A coupled finite element-boundary element method for modeling Diffusion equation in 3D multi-modality optical imaging

Three dimensional image reconstruction for multi-modality optical spectroscopy systems needs computationally efficient forward solvers with minimum meshing complexity, while allowing the flexibility to apply spatial constraints. Existing models based on the finite element method (FEM) require full 3D volume meshing to incorporate constraints related to anatomical structure via techniques such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003